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Poisson bracket formulation of nematic polymer dynamics

Randall D. Kamien*
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104

~Received 23 June 1999!

We formulate the dynamical theory of nematic polymers, starting from a microscopic Poisson bracket
approach. We find that the Poisson bracket between the nematic director and momentum depends on the
~Maier-Saupe! order parameter of the nematic phase. We use this to derive reactive couplings of the nematic
director to the strain rates. Additionally, we find that local dynamics breaks down as the polymers begin to
overlap. We offer a physical picture for both results.

PACS number~s!: 61.25.Hq, 83.70.Jr, 74.60.Ge, 03.50.2z
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I. INTRODUCTION AND SUMMARY

The dynamics of linelike objects, from biomolecules
flux lines in superconductors, has become increasingly
portant to understand. The processing and manufactur
petroleum products, food products, and petroleum-fo
products requires the control of polymer flow. The rema
able properties of superconductors can be exploited on
flux-flow dynamics is controlled. While the equilibrium sta
tistical mechanics of linelike objects such as directed po
mers, flux lines, and dipole chains in ferro- and electrorh
logical fluids has been formulated from the microsco
physics@1,2#, a similar theory has not been developed for t
dynamics. While polymer entanglement dramatically affe
the dynamics by introducing cosmologically long-tim
scales, the statics is not affected. Indeed, it is the dynamic
entanglement that aids in pinning of high-temperature su
conductors, in the strength of glue and in other remarka
rheological properties. Previously, dynamics have been
mulated on a hydrodynamic basis, which ignores the conn
tivity of the lines @3#. Other approaches include effectiv
theories that use single-polymer response functions and
glect polymer-polymer interactions@4#. Here, we study the
dynamics of polymers which, due to steric or other inter
tions, are already aligned into a nematic state. By consi
ing a system that is orientationally ordered in equilibriu
the effect of flow on alignment can be separated from
effect of alignment on flow.

In this work we formulate the fluctuating hydrodynami
of polymer nematics based on a microscopic, Pois
bracket approach@5#. In this way, we will account for poly-
mer degrees of freedom as well as long-lived hydrodyna
variables. Our principle result is a fundamentally derivati
of the elusive reactive couplingl ~Ref. @6#! between the
director fieldn and the velocity fieldv

]nm

]t
5@dmn2nmnn#H 11l

2
ng]gvn2

12l

2
ng]nvgJ .

~1.1!

Unlike most parameters in hydrodynamicsl is neither set by
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Kubo formulas nor the fluctuation-dissipation theorem. W
will show that to the order we work, our result agrees w
the analysis of Archer and Larson@7#, which is based upon a
phenomenological, Landau-theory dynamics@8#. Thus our
result both verifies the validity of both a microscopic and
phenomenological approach.

As is typical of the former approach, we develop o
theory in steps. First, we identify the hydrodynamic va
ables. In a polymer nematic system we have four fields
interest: the areal polymer densityr(x), the momentum den-
sity g~x!, the fluctuation of the nematic directordnW (x)
5n(x)2n0 , and the density of polymer ‘‘heads’’ an
‘‘tails,’’ rHT(x). We then write these fields in terms of th
positions and momenta of the individual monomers. We c
sider, as an example, the areal density fieldr(x). Since the
polymers are directed, we may write the location of theath
polymer in terms of an affine parameterta , which marks the
monomers:

Ra~ta!5@r a
x ~z!1taha

x ,r a
y ~z!1taha

y ,ta1sa#, ~1.2!

where rWa(z) is the ~two-dimensional! displacement of the
monomer at heightz5ta1sa away from the ground state
straight-line configuration with the two-dimensional tange
hW a and the polymers start at a heightz5sa . The expression
for the areal density is

r~x!5(
a

d2@rWa~z!1~z2sa!hW a2x'#Q@z2sa#Q@ea2z#,

~1.3!

whereea is the height of the polymer end. This expressi
requires further explanation and, at the same time, shows
inherent complexity of this problem. The areal density is
sum of delta functions in the plane at the positions of
polymers. Moreover, since these polymers have heads
tails the product of Heaviside step functionsQ~•! counts the
polymer only if we consider heights between the start a
end of the polymer atz5sa and z5ea , respectively. We
will investigate similar expressions for the remaining fiel
in the next section.

We note here that although expressions such as Eq.~1.2!
are awkward, similar expressions could not easily be form
2888 ©2000 The American Physical Society
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PRE 61 2889POISSON BRACKET FORMULATION OF NEMATIC . . .
in isotropic polymer systems. The essential feature of po
mer nematics is that chain contour length corresponds to
commonz axis along which all the polymers are more or le
aligned. This allows us to formulate our theory in space,
as to incorporate hydrodynamics, while at the same time
cluding the microscopic polymer degrees of freedom. Th
degrees of freedom are accounted for via the Poisson br
ets of therWa(z) with the conjugate momentumpW a(z). From
these, we can generate the Poisson brackets of the hydr
namic fields: if we can get a closed set of brackets then
can construct a consistent hydrodynamic theory. Howe
we see that the areal density~1.3! not only depends onrWa(z)
but also on the location of the polymer heads and tails
well as the average polymer tangenthW a . The head and tai
locations are accounted for via the fieldrHT(x) described
above. What do we do with the average polymer tangenthW a?
Though the nematic phase has two Nambu-Goldstone m
associated with spontaneously broken rotational invarian
there is, in addition, a massive mode, the Maier-Saupe o
parameterS, which measures the degree of nematic orderi
The hW a are associated with this mode. The order param
can change locally via changes in the local polymer ali
ment. Presumably, if the polymers are entangled, the t
scale for these rearrangements corresponds to some so
reptation time required for the release of topological co
straints. On the other hand, if the polymers are short~unen-
tangled! then there is a separation of time scales, which
lows us to approximately decouple the local Maier-Sau
mode. In both these limits, we can decouple these tilt mo
from the monomer modes. This will allow us to preavera
the tilt modes to arrive at effective Poisson brackets for
remaining fields.

The next step in our formulation of dynamics requires
coarse-grained free energy in terms of our macroscopic v
ables. In Sec. III, we will propose a free energy consist
with the symmetries of the system, which also includes
equilibrium physics of the polymer ends. From this, we w
derive dynamical equations for the hydrodynamic variabl

II. DEFINITION OF HYDRODYNAMIC VARIABLES

We start by formulating the theory in terms of micr
scopic, directed trajectories of the individual polyme
$rWa(z)%, wherea labels the polymer andrW(z) is the displace-
ment of the polymer from its equilibrium position. Reca
that the nematic state is characterized by the Maier-Sa
order parameter,

S5
3^cos2 u&21

2
, ~2.1!

where^•& denotes a thermal, ensemble average, andu is the
angle between the nematic director and the ordering
~taken throughout to beẑ). WhenSÞ1, the directors do no
all line up alongẑ. Since the nematic order parameter is
by the details of the isotropic-nematic transition, it is a m
sive, nonhydrodynamic mode. In order to take into acco
the ground-state value ofS we will assume that the equilib
rium polymer trajectory is Ra(z)5@(z2sa)ha

x ,(z
2sa)ha

y ,z# and that^rWa(z)&50. Thus, the microscopic di
-
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rector isdrW/dz1hW . Finally, them component of the momen
tum of polymera at z is pa

m(z).
Unlike previous formulations@9#, we do not consider the

traceless symmetric tensorQi j typically used for nematics
Rather, deep in the nematic state, we are only concentra
on the two Goldstone modes of the broken rotational sy
metry. As we shall see, this leads to a closed set of Pois
brackets to lowest order in derivatives and the director fl
tuation dnW . We will incorporate the ‘‘up-down’’ symmetry
of nematics via the symmetry of the free energy, just as
done in the usual equilibrium description of nematics
terms of the unit-vector director fieldn̂.

A. Canonical variables and separation of time scales

While our description of the chain locations is adequate
terms ofrWa(z) andhW a , we should take care in finding correc
canonical variables from which to construct macrosco
Poisson brackets. We imagine starting with a Hamilton
that is a function the actual polymer locationRa(ta), as in
Eq. ~1.2!, and the conjugate momentumpa(ta). The equa-
tions of motion in thex-y plane are

ṗa
i ~ta!52

dH

dRa
i ~ta!

Ṙi~ta!5
dH

dpa
i ~ta!

. ~2.2!

If hW a is constant then these equations of motion are preci

ṗa
i ~z!5$pa

i ~z!,H%

ṙ a
i ~z!5$r a

i ~z!,H% ~2.3!

with

$r a
i ~z!,r b

j ~z8!%5$pa
i ~z!,pb

j ~z8!%50, ~2.4!

and

$r a
i ~z!,pb

j ~z8!%5dabd i j d~z2z8!, ~2.5!

where i and j run over thex-y plane. We have made th
identificationpa(z)5pa(ta) with z5ta1sa . We must also
calculate the Poisson bracket ofpa

z (z) with the spatial coor-
dinate. Motion along thez axis should be accounted for i
motion of the polymer ends. Indeed, motion of the mon
mers up or down depends only on the motion of the start
point sa . Thus,

$r a
i ~z!,pb

z ~z8!%50 ~2.6!

but

$za ,pb
z ~z8!%5dabd~za2z8!, ~2.7!

where we use the symbolza to remind the reader that th
commutator does not vanish only for momenta and positi
on the same polymer. In other words,za takes the place of
the z component ofrW i(z) and za5sa1ta . We remind the
reader that the fact that the affine parametert can be mapped
one-to-one with the coo¨rdinate heightz is precisely the sim-
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2890 PRE 61RANDALL D. KAMIEN
plification, which we are exploiting. Of course, when w
consider hydrodynamic variables,za will just become the
height coodinatez.

We must now justify our neglect of the dynamics ofhW a .
As we discussed in the Introduction, we can do this in t
limits. One limit is when the chains are long and high
entangled. In this case we expect that rearrangements o
nematic texture require topological constraint release or
other words, reptation. We are concentrating here on dyn
ics on time scales shorter than the reptation time. We co
extend this work by including some sort of reptation-bas
dynamics for the tilt fieldshW a , thus incorporating both hy
drodynamics and topological constraints in the same the

There is another limit of interest. If the polymers a
short, we expect that the modes associated with the Ma
Saupe order parameter will be the slowest to relax to
equilibrium distribution. In this case, we expect that on t
intermediate time scales we are focusing on, the distribu
of hW a will also be static, but consistent with the backgrou
nematic order. In this case, the tilt modes can be avera
over, thus explicitly removing the dependence of the fie
on them. We contrast this average to a thermodynamic a
age: in this case, the average is over an ensemble of diffe
frozen-in textures while in thermodynamics we take the ti
average of a single molecule. In both these cases we ge
same mean-square average of the tilt field, though the co
lations will differ.

Thus, in both the very long polymer and short polym
case we can preaverage the tilt degrees of freedom.

B. Macroscopic fields

We must first define the coarse-grained, macrosco
fields, namely the mass density, the director and the mom
tum density. The mass density is given by

r~x!5(
a

d2@rWa~z!1~z2sa!hW a2x'#Q@z2sa#Q@ea2z#.

~2.8a!

As described in the Introduction, the terms in the sum co
from the following considerations:~1! The Dirac delta func-
tion ‘‘counts’’ the areal mass~note that it is a two-
dimensional delta function, defined in thexy plane!. ~2! The
pair of Heaviside step functions~Q@•#! control the polymer
lengths. Theath polymer begins atz5sa and ends atz
5ea .

The remaining macroscopic fields are defined via

@rdni #~x!5(
a

Fdra
i ~z!

dz
1ha

i Gd2@rWa~z!1~z2sa!hW a2xW'#

3
Q@z2sa#Q@ea2z#

A11hW a
2

~2.8b!

gm~x!5(
a

pa
m~z!d2@rWa~z!1hW a~z2sa!2xW'#

3Q@z2sa#Q@ea2z#. ~2.8c!
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Note that an additional factor of (11hW a
2)21/2 arises in the

definition of dnW (x) since the normalized unit~average! tan-
gent vector is

Ta5
@ha

x ,ha
y ,1#

A11hW 2

. ~2.9!

Note that the naive definitions of the macroscopic fields, e

r~x!5(
a

d2@rWa2xW'#Q@z2sa#Q@ea2z#, ~2.10!

applies only whenhW a[0W , or, in other words, when the nem
atic ground state has Maier-Saupe order parameter,S51.

III. PREAVERAGING THE NEMATIC TEXTURE

As we discussed in the Introduction, the Poisson brack
of the hydrodynamic fields cannot close since they all
pend on the average polymer tilthW a . As discussed in the
preceding, we would like to preaverage over these degree
freedom to arrive at Poisson brackets for the hydrodyna
fields. This procedure can be justified in two limiting case

Consider the dynamics of a single polymer of lengthL.
This can be decomposed into normal modes a la Rous
Zimm @8#. In either case thenth mode has wave numbe
qn52pn/L with a relaxation frequencyvn}n2/L2. For very
short polymers the separation in time scales between
lowest moden51 and the other modes is large. In this lim
we can decouple the longest mode—the tilt mode
characterized byhW . We could thus average the tilts over th
collection of polymers. The mean square of the tilt fields
simply related to the Maier-Saupe order parameterS. We
make the distinction between the time average of a sin
polymer’s tilt field which gives equilibrium statistics and th
quenched average over the frozen polymer tilts.

As we imagine lengthening the polymers, the splitting
time scales becomes less pronounced and their spectrum
comes continuous. However, when the polymer is su
ciently long, a new dynamics dominates the longest wa
number modes: reptation dynamics. In this regime, the
modes can only relax via activated reptation@10#, which is
an especially apt description of the likely rearrangements
polymer nematics. Thus, when the polymer is long enough
be entangled we also have a large separation of time sc
As a result, in this limit, we may also treat the polymer t
field as essentially frozen.

We have now two distinct averages: the first is an aver
over a massive degree of freedom that sets the value ofS. In
the present formulation, this average is overhW a . The second
average is the thermal average over fluctuations about
ground state, i.e. averages overrWa(z). We will treat these
two averages separately, which amounts to treating the a
age overhW a as a quenched average. To connect with
Maier-Saupe order parameter, we have
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S5
3

2 S 1

11hW a
2 D 2

1

2
, ~3.1!

since cosu in Eq. ~2.1! is just thez component of the averag
tangent vector and where we have denoted the quenche
erage ofX by X̄. Expanding for smalluhW au, we have2

3 (1

2S)'hW a
2. We will then take averages overhW a weighted by

P~hW a!5
1

2pD
e2uhW u2/2D, ~3.2!

whereD5 1
3 (12S) so that Eq.~3.1! is satisfied.

In order to find the average macroscopic field variabl
we must regularize the Dirac delta functions appearing in
~28!. To do this we represent them as Gaussians with
widths taken to be the excluded area of each polymer
fixed z plane. We define

d2~rW;a!5
1

2pa
e2urWu2/2a. ~3.3!

Then, when we average overhW a weighting by Eq.~3.2! we
find

d2@rWa~z!1~z2sa!hW a2x' ;a#

5d2@rWa~z!2x' ;a1D~z2sa!2#. ~3.4!

We can thus calculate the tilt-averaged fields. Since
have only included terms for the tangent vector in Eq.~2.8b!
to leading order inhW a , we calculate average field values
orderD

r̄~x!5(
a

d2@rWa~z!2x' ;a1D~z2sa!2#Ja~z!

~3.5a!

@ r̄d̄ni #~x!5(
a

~12D!
dra

i ~z!

dz
d2@rWa~z!2xW' ;a

1D~z2sa!2#Ja~z!2(
a

~z2sa!D] i

3d2@rWa~z!2xW' ;a1D~z2sa!2#Ja~z!

~3.5b!

ḡm~x!5(
a

pa
m~z!d2@rWa~z!2xW' ;a1D~z2sa!2#Ja~z!,

~3.5c!

whereJa(z)[Q@z2sa#Q@ea2z#.

The breakdown of local dynamics

Typically, Poisson brackets for dynamical variables are
the form

$r~x!,gW ~x8!%52¹W x@r~x!d3~x2x8!#. ~3.6!
av-

,
q.
e
a

e

f

The presence of the delta-function in Eq.~3.6! along with a
local free energy density leads to local dynamics@11#, i.e.,
every term in the dynamical equations is evaluated at
same point in space and time. Such a result must, of cou
be taken with a grain of salt. The delta function is an idea
zation to a system composed of pointlike constituents.
reality, these delta functions should be replaced with
smeared-out distribution. Usually, this presents
problem—calculations may be done with the smeared-
distribution and the limit may be taken at the end. Howev
this is not the case in this situation.

From Eq.~3.4!, it is easy to see that we may only repla
the disorder smeared delta functions with the original dis
butions~of width a! whena@D(z2sa)2. In other words, it
is only when the original width is wider than the disorde
averaged width that the distributions are delta-function li
Since the presence of the termQ@z2sa#Q@ea2z# in the
expressions for the hydrodynamic variables limits the ma
mum value ofz, we haveD(z2sa)2,D(ea2sa)25Dl 2,
wherel is the typical polymer length. Thus, we see that t
original distributions are recovered everywhere whene

l Ah̄2[l AD!a. This is easy to interpret; when the avera
wandering of the polymer away from its starting point,l AD
is smaller than the interpolymer spacing, we may continue
treat the polymers and their interactions as local. Once
polymers have tipped out of their cages the dynamics w
become, necessarily, nonlocal. A force atx leads to a reac-
tion at x8 if a singlepolymer can go fromx to x8. Presum-
ably, the typical polymer lengthl should be replaced by
l P , the polymer persistence length, whenl .l P and the
locality condition becomesDl P

2 !a2.
In this delocalized regime the formalism will break dow

In particular, the Poisson brackets of the coarse-grai
fields, calculated in terms of Eqs.~2.6! and ~2.7! will be
straightforward but complicated, and will necessarily lead
non-local dynamics,even if the free-energy density arise
from local interactions. In the Conclusion, we will discuss
possible alternatives to a nonlocal formalism based on
ferent sets of variables.

IV. FLUCTUATING HYDRODYNAMICS

We can, however, consider the case ofD!1. This could
arise in the description of flux lines in superconductors
polymer nematics in applied fields where the ground-st
polymer configurations are almost always parallel toẑ. In
any of these limits, it is appropriate to replace the spread
delta functionsd2@•;a1D(z2s)2# with pointlike delta func-
tions. In this case, we can calculate the Poisson bracket
the average fields in terms of the canonical, microsco
brackets. We find the following, nonzero brackets, to low
order in derivatives@of both rWa(z) and delta functions# and
dn:

$r̄~x!,ḡm~x8!%52@dn
m2dz

mdn
z#]x

n@r~x!d3~xW2xW8!#

1~11D!dz
m$rHT~x!d3~xW2xW8!

2] i@rdni~x!d3~xW2xW8!#% ~4.1a!
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2892 PRE 61RANDALL D. KAMIEN
$d̄ni~x!,ḡm~x8!%52@dn
m2dz

mdn
z#d3~xW2xW8!]x

ndni~x!

1@~12D!d im]x
z2D]mz]x

i #d3~xW2xW8!

~4.1b!

$ḡm~x!,ḡn~x8!%52]x
n@gm~x!d3~xW2xW8!#

1]x8
m

@gn~x8!d3~xW2xW8!#. ~4.1c!

We have been forced to introduce an additional hydro
namic field,rHT(x), the density of polymer heads and tai
defined as

rHT~x![(
a

~12D!$d2@rWa~sa!2xW'#d~z2sa!

2d2@rWa~ea!2xW'#d~ea2z!%. ~4.2!

Note that the second term in Eq.~4.1a! is exactly equal to
]zr̄(x). In other words, we have

~12D!]zrW ~x!1] i@rW dn̄i~x!#5rHT~x!. ~4.3!

This constraint is the familiar constraint of line liquid
@12,13#, which conserves polymer number but for polym
ends. The prefactor of (12D) comes from the average ove
thez direction. In other words, the rotationally invariant co
servation law isnW 0•¹r1¹•nW 5rHT . When averaging ove
the intrinsic randomness ofnW 0 , we get a factor of (12D) in
front of ]zr. It is not present in other terms because they
higher order in derivatives and powers ofdnW .

A. Equations of motion

With these Poisson brackets we can systematically de
the reactive terms of hydrodynamics. The viscosities w
appear in accord with the symmetries of the system. Be
uniaxial there will be five viscosities@14#, characterized by
the viscous stress tensorVab5habgbAgb , where

hmngb5h1@nmnmngnb#1h2@dmg
' dnb

' 1dmb
' dng

' 2dmn
' dgb

' #

1h4@dmn
' dgb

' #1h3@nmngdnb
' 1nnngdmb

' 1nmnbdng
'

1nnngdmb
' #1h5@dmn

' ngnb1nmnndgb
' #, ~4.4!

wheredmn
' 5dmn2nmnn . The form ofV is fixed by symme-

tries: by nematic inversion it must be even innW and by the
Kubo formulas@5# it must be symmetric underm↔n, g↔b
and (mn)↔(gb), and Agb5 1

2 (]gvb1]bvg) is the strain
rate tensor constructed out of the fluid velocityvW . Expanding
nW 5 ẑ1dnW we can find the viscosity tensor in the nema
phase.

The free energy from which we will derive the reactiv
terms is:

F85E d3xH gW 2

2r
1FequilJ , ~4.5!

where the equilibrium free energy is the sum of terms

Fequil5FdnW1Fpol ~4.6!
-

r

e

e
ll
g

and

FdnW5E d3xH K1

2
~¹•dnW !21

K2

2
~¹3dnW !21

K3

2
~]zdnW !2J

~4.7!

is the usual Frank free energy for a nematic, while

Fpol5E d3xH B

2
dr21

G

2
@]zdr1r0¹•dnW #2J ~4.8!

is the free energy of the polymer@2#. In Eq. ~4.8!, B is the
two-dimensional bulk modulus,r05r2dr is the average,
areal polymer density, andG is the fugacity for hairpins and
free ends. We have replacedrHT with the expression in Eq
~4.3!, to lowest order in the field fluctuationsdr and dnW
@which is why we drop the factor of (12D) in front of
]zdr#. The parameterG is given byG5kBTl /2r0 wherel
is the typical polymer length@2#. Terms of the form
dr¹•dnW are not allowed due to thenW→2nW symmetry of the
nematic phase.

We are now able to derive the equations of motion forgW ,
dnW , anddr ~where we have dropped the bar over the va
ables denoting thehW average!. They are~with vW 5gW /r)

] tr52] igi1~11D!rHTvz2] i~dnigz! ~4.9a!

] tdni52] j~v jdni !1~12D!]zv i2D] ivz2G
dF@dni #

d~dni !
1u i

~4.9b!

] tgm52]nS gmgn

r D1@dn
m2dz

mdn
z#r]nS dF@r#

dr D
1]aVam1jm , ~4.9c!

where, in order to approach thermodynamic equilibrium,
noise termsj i(xW ,t) and u i(xW ,t) have the following correla-
tions @15#:

^jm~xW ,t !jb~xW8,t8!&52kBThmngb]n]gd3~xW2xW8!d~ t2t8!.

~4.10a!

^um~xW ,t !un~xW8t8!&52kBTGdmn
' d3~xW2xW8!d~ t2t8!

~4.10b!

^jm~xW ,t !un~xW8,t8!&50. ~4.10c!

There are a number of features of these equations w
mention. First, we see that the typical polymer lengths co
into the equations through the couplingG, present in the
equations for] tdni and] tgm . WhenG is large, correspond-
ing to long polymers, we may take the density,rHT50. In
the short molecule limit, presumablyG'0. There is a cross-
over wavevectorkc5A2Br0

3/(kBTl ) below which the sys-
tem behaves as a pure nematic and above which the leng
the polymers becomes important. There is a correspond
time scalevc}kc

2;1/l , which delineates a similar short-to
long crossover.
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In the short-polymer limit, care must be taken due to
nature of the approximation under which the Poisson bra
ets were derived. In particular, since we treat the polym
tangent field as a vector, we are, in principle, distinguish
nW and 2nW . However, for small fluctuations around equilib
rium, long polymer nematics should not sample the en
space of fluctuations: it is very unlikely that an entire po
mer will rotate byp around thex or y axis. This simplifica-
tion is what enabled us to get a closed set of Poisson brac
order by order in a derivative expansion. The effect of ha
pins could be put in explicitly through the introduction of
hairpin-density field@2#.

B. Reactive couplings in the nematodynamic limit

Finally, we note that Eq.~4.9b! gives an expression fo
the elusive reactive parameterl @5# in nematodynamics. By
rotational invariance,nW→2nW and the constraintnW 251, the
reactive part of the equation of motion fornW has the form

dnm

dt
5dmn

' F11l

2
ng]gvn2

12l

2
ng]nvgG . ~4.11!

We can thus identify

l5122D5
112S

3
. ~4.12!

This is in general agreement with the results of Forster@6#
who calculated the value ofl within a Poisson bracket for
malism forQmn the symmetric, traceless order parameter
short molecule nematic liquid crystals@14#. He found that

l5
112aS

3
, ~4.13!

wherea5(I l12I t)/(I l2I t) is a parameter depending on th
moments of inertiaI l and I t of the nematogens parallel an
perpendicular to the nematic axis, respectively. We thus
cover Forster’s result whena51 or, in other words, when
the aspect ratioI l /I t of the nematogens becomes infinit
Presumably, this is a consequence of taking delta-func
densities in the transverse plane.

It is interesting to compare this result to the work of A
cher and Larson@7#. In the same limit of infinite aspect ratio
they found an expression forl in terms of the expectation
of the second-and fourth-rank order parameters,^P2&[S and
^P4&, whereP2 andP4 are the second and fourth Legend
polynomials evaluated atx5cosu:

l5
15̂ P2&148̂ P4&142

105̂ P2&
. ~4.14!

To be consistent, we should expand Eq.~4.14! in powers of
D5(12S)/3 to compare with Eq.~4.12! and compare linea
terms. First, to linear order inD,

^cos4 u&5122^hW a
2&'~12^hW a

2&!2'^cos2 u&2 ~4.15!

and so^P4&'(35S2210S27)/18, which gives
e
k-
r

g

e

ets
-

r

e-

n

l511
2

3
~S21!1

2

9
~S21!21¯ . ~4.16!

Thus, to leading order in (S21)53D Eq. ~4.14! agrees with
Eq. ~4.12!. Thus, within theS'1 limit our result should be
consistent with the data as in Ref.@7#. We note, moreover,
that since the isotropic-to-nematic phase transition is fi
order, S does not grow continuously from 0. Indeed,
Maier-Saupe theoryS'0.44 at this transition@14#, and thus
D'0.2. Therefore the deviation between our result and
more exact result~4.14! should be small sufficiently wel
aligned samples. However, although Eq.~4.12! may be quan-
titatively reasonable, it misses an essential qualitative f
ture: it is always less than 1 and thus predicts that nema
will always tumble.

Though the linear result inD fails to predict the crossove
from flow aligning to tumbling behavior, the virtue of ou
derivation of l is that we get a direct interpretation of it
origin. In a highly aligned sample withS51 only gradients
of v' along thez direction can lead to rotations of the mo
ecule~see Fig. 1!. On the other hand, whenS,1, gradients
in the x direction ofvz can also rotate the molecules and
the polymer nematics would always be in a tumbling mo
A higher order analysis in powers ofD would be required to
see if al.1 could come from our direct approach.

V. CONCLUSIONS

In summary, we have derived the Poisson brackets of
relevant degrees of freedom for a polymer nematic. We h
shown that these canonical brackets become highly nonl
when the polymers start to overlap. In the limit where t
polymers do not overlap, we have presented a microsco
derivation of the reactive couplingl, a coupling which is not
a long-wavelength limit of a correlation function.

Our analysis requires a ‘‘locality condition’’ in order t
be trustworthy. While this may appear restrictive, one mig
imagine that, at some level of coarse graining the polym
the no overlap condition might be met. If we were to clum
polymer regions correlated in thexy plane together and

FIG. 1. Velocity fields and nematic directors with various gr
dients and molecular orientations.~a! and ~c! gradient in thez di-
rection ofv' . This will rotate the director for all values ofS. ~b!
and~d! gradient in thex direction ofvz . Only in ~d! will this rotate
the molecule, i.e., whenS,1.
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coarse grain to the scale of this ‘‘entanglement correlat
length’’ je , our analysis may be applicable. Our analysis
especiallyapplicable to flux lines in superconductors. The
rHT[0 and there is no problem, even in principle, to co
sidering the flux line tangents as vectors. The flux lines
addition, haveD50, simplifying the theory further. It is per
haps in this context that one could hope to make the m
theoretical progress.

This derivation has shown the inherent, unavoidable n
locality in polymer nematic dynamics. An interesting pos
bility is to focus on a different set of conserved or almo
conserved variables. For instance, it may be possible to
formulate this dynamics in terms of an entanglement den
by calculating the Hopf density@16#, a scalar that measure
the local curvature of the director configuration—for lon
polymers curvature is a measure of local entanglement. T
ys

ry,

s

n
s
,
-
n

st

-
-
t
e-
ty

is

density could be used as a starting point for a phenome
logical theory of ‘‘entanglement dynamics.’’ Another var
able of interest might be the repton density, which measu
length per unit length@17#. It may be possible to develop
hydrodynamics for this field as well@18#.
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