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Poisson bracket formulation of nematic polymer dynamics
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Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
(Received 23 June 1999

We formulate the dynamical theory of nematic polymers, starting from a microscopic Poisson bracket
approach. We find that the Poisson bracket between the nematic director and momentum depends on the
(Maier-Saupgorder parameter of the nematic phase. We use this to derive reactive couplings of the nematic
director to the strain rates. Additionally, we find that local dynamics breaks down as the polymers begin to
overlap. We offer a physical picture for both results.

PACS numbgs): 61.25.Hq, 83.70.Jr, 74.60.Ge, 03.5@.

I. INTRODUCTION AND SUMMARY Kubo formulas nor the fluctuation-dissipation theorem. We
will show that to the order we work, our result agrees with
The dynamics of linelike objects, from biomolecules to the analysis of Archer and Lars], which is based upon a
flux lines in superconductors, has become increasingly imphenomenological, Landau-theory dynam{&. Thus our
portant to understand. The processing and manufacture oésult both verifies the validity of both a microscopic and a
petroleum products, food products, and petroleum-foodphenomenological approach.
products requires the control of polymer flow. The remark- As is typical of the former approach, we develop our
able properties of superconductors can be exploited only itheory in steps. First, we identify the hydrodynamic vari-
flux-flow dynamics is controlled. While the equilibrium sta- ables. In a polymer nematic system we have four fields of
tistical mechanics of linelike objects such as directed poly4interest: the areal polymer densjiyx), the momentum den-
mers, flux lines, and dipole chains in ferro- and electrorheosity g(x), the fluctuation of the nematic directasri(x)
logical fluids has been formulated from the microscopic=n(x)—ny, and the density of polymer “heads” and
physics[1,2], a similar theory has not been developed for the*tails,” py(X). We then write these fields in terms of the
dynamics. While polymer entanglement dramatically affectgpositions and momenta of the individual monomers. We con-
the dynamics by introducing cosmologically long-time sider, as an example, the areal density fig{e). Since the
scales, the statics is not affected. Indeed, it is the dynamics g@olymers are directed, we may write the location of tith
entanglement that aids in pinning of high-temperature supetpolymer in terms of an affine parametey, which marks the
conductors, in the strength of glue and in other remarkablenonomers:
rheological properties. Previously, dynamics have been for-
mglated on a.hydrodynamic basis, which ignores the connec- Ro(72)=[r(2)+ 7,05 1%(2) + 7,0, 7, +S,], (1.2
tivity of the lines [3]. Other approaches include effective
theories that use single-polymer response functions and Nhere F.(2) is the (two-dimensional displacement of the

glect polymer-polymer interactiongl]. Here, we study the 0o o height=r,+s, away from the ground state,

dynamics of polymers which, due to steric or other interaCyaignt line configuration with the two-dimensional tangent
tions, are already aligned into a nematic state. By conside

r- . .
ing a system that is orientationally ordered in equilibrium h, and the polymers start at a height s, . The expression

the effect of flow on alignment can be separated from thetor the areal density is
effect of alignment on flow.
In this work we formulate the fluctuating hydrodynamics _ ~ -
of polymer nematics based on a microscopic, Poissonp(x)_é F[7a(2)+ (2= S)ho =%, 102~ 5,10 e, 2],
bracket approacfb]. In this way, we will account for poly- (1.3
mer degrees of freedom as well as long-lived hydrodynamic
variables. Our principle result is a fundamentally derivationwhereea is the height of the polymer end. This expression
of the elusive reactive coupling (Ref. [6]) between the requires further explanation and, at the same time, shows the

director fieldn and the velocity fields inherent complexity of this problem. The areal density is a
sum of delta functions in the plane at the positions of the
an, 1+X\ 1-A polymers. Moreover, since these polymers have heads and
rrai i AL | et Y e e AV TR tails the product of Heaviside step functioB$-) counts the

(1.2 polymer only if we consider heights between the start and
end of the polymer azk=s, and z=e,, respectively. We
Unlike most parameters in hydrodynamicss neither set by  will investigate similar expressions for the remaining fields
in the next section.
We note here that although expressions such ag1ER.
*Electronic address: kamien@physics.upenn.edu are awkward, similar expressions could not easily be formed
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in isotropic polymer systems. The essential feature of polyrector isdf/dz+h. Finally, thex component of the momen-
mer nematics is that chain contour length corresponds to thg,y of polymera atz is p*(2)

. . a -
commonz axis along which all the polymers are more or Iess  ypjike previous formulation§9], we do not consider the
aligned. This allows us to formulate our theory in space, SGraceless symmetric tens@; typically used for nematics.
as to incorporate hydrodynamics, while at the same time inRather, deep in the nematic state, we are only concentrating
cluding the microscopic polymer degrees of freedom. Thesg, the two Goldstone modes of the broken rotational sym-
degrees of freedom are accounted for via the Poisson braclgetry. As we shall see, this leads to a closed set of Poisson
ets of ther,(2) with the conjugate momentu,(z). From  pyrackets to lowest order in derivatives and the director fluc-
these, we can generate the Poisson brackets of the hydrodyration si. We will incorporate the “up-down” symmetry
namic fields: if we can get a closed set pf brackets then Wg¢ nhematics via the symmetry of the free energy, just as is
can construct a consistent hydrodynamic theory. Howevelyone in the usual equilibrium description of nematics in

we see that the areal density.3) not only depends on,(z) terms of the unit-vector director fielfl.
but also on the location of the polymer heads and tails as

well as the average polymer tangént. The head and tail A. Canonical variables and separation of time scales
locations are accounted for via the fiepgi+(x) described
above. What do we do with the average polymer tanﬁgﬁt R - o
Though the nematic phase has two Nambu-Goldstone modd&'ms 0ff () andh,,, we should take care in finding correct
associated with spontaneously broken rotational invarianc&anonical variables from which to construct macroscopic
there is, in addition, a massive mode, the Maier-Saupe orddp0iSson brackets. We imagine starting with a Hamiltonian
paramete§, which measures the degree of nematic orderingthat is a function the actual polymer locatiéf(7,), as in

The ﬁa are associated with this mode. The order parametetigr']élé?}n%?gr:r}ﬁ fhog({uga};en?ggentum(ra). The equa-
can change locally via changes in the local polymer align- yp
ment. Presumably, if the polymers are entangled, the time SH
scale for these rearrangements corresponds to some sort of P (7,)=—
reptation time required for the release of topological con- o OR,(7a)
straints. On the other hand, if the polymers are skamen- .

tangled then there is a separation of time scales, which alif h, is constant then these equations of motion are precisely

lows us to approximately decouple the local Maier-Saupe

While our description of the chain locations is adequate in

Ri(r,)= (2.2

P Ta)

mode. In both these limits, we can decouple these tilt modes b (2)={p'(z),H}
from the monomer modes. This will allow us to preaverage
the tilt modes to arrive at effective Poisson brackets for the F (2)=1r! (2),H} 2.3

remaining fields.

The next step in our formulation of dynamics requires aiip
coarse-grained free energy in terms of our macroscopic vari-
ables. In Sec. lll, we will propose a free energy consistent

i J ("= Il J (91—
with the symmetries of the system, which also includes the {ra(2)1p(2)}={Pa(2).pp(2)} =0, (24
equilibrium physics of the polymer ends. From this, we will and
derive dynamical equations for the hydrodynamic variables.

{ri(2),ph(2')}= 8,50 8(2—27'), (2.5

II. DEFINITION OF HYDRODYNAMIC VARIABLES

wherei andj run over thex-y plane. We have made the
identificationp,(z) =p,(7,) with z=7,+s,. We must also
calculate the Poisson bracketpf(z) with the spatial coor-

We start by formulating the theory in terms of micro-
scopic, directed trajectories of the individual polymers,

{ro(2)}, wherea labels the polymer and(z) is the displace- dinate. Motion along the axis should be accounted for in

ment of the polymer from its equilibrium position. Recall tion of th lvmer ends. Indeed. motion of the mono-
that the nematic state is characterized by the Maier—Saup@0 on of the polymer enas. eed, motion of the mono
order parameter, mers up or down depends only on the motion of the starting

points,. Thus,

Szw, 2.1 {r(2),p5(2')}=0 2.6
but

where(-) denotes a thermal, ensemble average, @rgdthe

angle between the nematic director and the ordering axis {20 .PH(Z)} = 8,p0(2,—2'), 2.7

(taken throughout to b2). WhenS+ 1, the directors do not

all line up alongz. Since the nematic order parameter is setwhere we use the symbal, to remind the reader that the

by the details of the isotropic-nematic transition, it is a mas-commutator does not vanish only for momenta and positions

sive, nonhydrodynamic mode. In order to take into accounbn the same polymer. In other words, takes the place of

the ground-state value &we will assume that the equilib- the z component offj(z) andz,=s,+ 7,. We remind the

rium  polymer trajectory is R,(z)=[(z—s,)h},(z reader that the fact that the affine parametean be mapped

—s,)h’,z] and that(r,(z))=0. Thus, the microscopic di- one-to-one with the cadinate heightz is precisely the sim-
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plification, which we are exploiting. Of course, when we Note that an additional factor of (1h2) %2 arises in the

consider hydrodynamic variables, will just become the  definition of 5ri(x) since the normalized unigveragg tan-
height coodinate. gent vector is

We must now justify our neglect of the dynamicsﬁqj.
As we discussed in the Introduction, we can do this in two

limits. One limit is when the chains are long and highly [h%,hY,1]
entangled. In this case we expect that rearrangements of the P (2.9
nematic texture require topological constraint release or, in V1+h2

other words, reptation. We are concentrating here on dynam-
ics on time scales shorter than the reptation time. We could . o o
extend this work by including some sort of reptation-based\Note that the naive definitions of the macroscopic fields, e.g.,

dynamics for the tilt fieldfﬁa, thus incorporating both hy-
drodynamics and topological constraints in the same theory.

There is another limit of interest. If. the pqumers are p(x)zz 8r,—X 109[z—s,]0[e,—z], (2.10
short, we expect that the modes associated with the Maier- @
Saupe order parameter will be the slowest to relax to an
equilibrium distribution. In this case, we expect that on the , > = ,
intermediate time scales we are focusing on, the distributio@PPlies only wher, =0, or, in other words, when the nem-
of h,, will also be static, but consistent with the backgroundatIC ground state has Maier-Saupe order parameted.
nematic order. In this case, the tilt modes can be averaged
over, thus eXpIICItIy remOVing the dependence of the fields IIl. PREAVERAGING THE NEMATIC TEXTURE
on them. We contrast this average to a thermodynamic aver-
age: in this case, the average is over an ensemble of different As we discussed in the Introduction, the Poisson brackets
frozen-in textures while in thermodynamics we take the timeof the hydrodynamic fields cannot close since they all de-
average of a single molecule. In both these cases we get th@nd on the average polymer tfit,. As discussed in the
same mean-square average of the tilt field, though the corrgreceding, we would like to preaverage over these degrees of

lations will differ. freedom to arrive at Poisson brackets for the hydrodynamic
Thus, in both the very long polymer and short polymerfields. This procedure can be justified in two limiting cases.
case we can preaverage the tilt degrees of freedom. Consider the dynamics of a single polymer of length
This can be decomposed into normal modes a la Rouse or
B. Macroscopic fields Zimm [8]. In either case theth mode has wave number

— H H 20 2
We must first define the coarse-grained, macroscopigﬂ_tzwn{L with ?hrelaxatmntfrquentpgonocn / ll_ : Eoiv\\//ery th
fields, namely the mass density, the director and the momerf— or tpo y(;ner_sl edstehpara;hlon n dlme Slca esl ?h' el?”_t €
tum density. The mass density is given by owest moden=1 and the otheér modes Is large. in this fimit,

we can decouple the longest mode—the tilt mode—

. characterized by1. We could thus average the tilts over the
p(x)=2>, 6F,(2)+(z—s,)h,—x 10[z—s,]0[e,—Z]. collection of polymers. The mean square of the tilt fields is
“ (2.83 simply related to the Maier-Saupe order param&eiVe
’ make the distinction between the time average of a single

As described in the Introduction, the terms in the sum comdolymer’s tilt field which gives equilibrium statistics and the
from the following considerationg1) The Dirac delta func- guenched average over the frozen polymer tilts.
tion “counts” the areal mass(note that it is a two- As we imagine lengthening the polymers, the splitting in
dimensional delta function, defined in thg plang. (2) The  time scales becomes less pronounced and their spectrum be-
pair of Heaviside step function@®[-]) control the polymer ~comes continuous. However, when the polymer is suffi-
lengths. Theath polymer begins at=s, and ends az  ciently long, a new dynamics dominates the longest wave-
=e,. number modes: reptation dynamics. In this regime, the tilt
The remaining macroscopic fields are defined via modes can only relax via activated reptatid®], which is
an especially apt description of the likely rearrangements in
polymer nematics. Thus, when the polymer is long enough to
8%[F (2)+ (z— Sa)ﬁa_)_()i] be entangleq we_als_o _have a large separation of time scales.
As a result, in this limit, we may also treat the polymer tilt
field as essentially frozen.
O[z-s,]Ole,—z] We have now two distinct averages: the first is an average
(2.8)  over a massive degree of freedom that sets the val$e lof

1+ hfl the present formulation, this average is oﬁgr The second
average is the thermal average over fluctuations about the
- ground state, i.e. averages ovef(z). We will treat these
gH(X) =2 PUD) P [T (D) +No(z—5,) — %, ] two averages separately, which amounts to treating the aver-
‘ age overﬁa as a quenched average. To connect with the
X0[z—-s,]O[e,—Z]. (2.80 Maier-Saupe order parameter, we have

dr' ()

a

+h!,

[pon'](x)=2

dz
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The presence of the delta-function in E§.6) along with a
local free energy density leads to local dynamitg], i.e.,
every term in the dynamical equations is evaluated at the
same point in space and time. Such a result must, of course,

since cog in Eq. (2.1) is just thez component of the average pe taken with a grain of salt. The delta function is an ideali-
tangent vector and where we have denoted the quenched ayation to a system composed of pointlike constituents. In

erage ofX by X. Expanding for smallh,|, we haveZ (1
-9~ hi. We will then take averages ovhy, weighted by

l N
P(h)=5xe e In2, 3.2

whereA=1 (1—9S) so that Eq(3.1) is satisfied.

In order to find the average macroscopic field variables
we must regularize the Dirac delta functions appearing in EQ_.
(28). To do this we represent them as Gaussians with th
widths taken to be the excluded area of each polymer in

fixed z plane. We define
2/ 1 —Ir|?/2a
6°(Fa)= 5mat . (3.3

Then, when we average ovﬁg weighting by Eq.(3.2) we
find

ST (2)+(z2—S,)N,

=87, (2)—x, ;a+A(z—s,)?].

—X,;a]

(3.9

reality, these delta functions should be replaced with a
smeared-out distribution. Usually, this presents no
problem—calculations may be done with the smeared-out
distribution and the limit may be taken at the end. However,
this is not the case in this situation.

From Eq.(3.4), it is easy to see that we may only replace
the disorder smeared delta functions with the original distri-
butions(of width a) whena>A(z—s,)?. In other words, it
is only when the original width is wider than the disorder-

veraged width that the distributions are delta-function like.

ince the presence of the ter®[z—s,]®[e,—z] in the
expressions for the hydrodynamic variables limits the maxi-
mum value ofz, we haveA(z—s,)’<A(e,—s,)’=A/?,
where/ is the typical polymer length. Thus, we see that the
original distributions are recovered everywhere whenever

/WE/JR a. This is easy to interpret; when the average
wandering of the polymer away from its starting poirit/A

is smaller than the interpolymer spacing, we may continue to
treat the polymers and their interactions as local. Once the
polymers have tipped out of their cages the dynamics will
become, necessarily, nonlocal. A forcexaleads to a reac-
tion atx’ if a singlepolymer can go fronx to x’. Presum-
ably, the typical polymer length” should be replaced by

We can thus calculate the tilt-averaged fields. Since we p. the polymer perS|stence Iength when>/ and the

have only included terms for the tangent vector in &g8b

to leading order irh,,, we calculate average field values to

orderA

p(X)=2 F(2)—x, ;a+A(z—5,)2]E (2)
(3.539

)
[pon'](x)= 2 1- A) SF,(2)—%, ;a

+A(2—5,)2E (2)— 2 (z—S,)Ad;

X 8T o(2) =X, ;a+A(z—5,)2]E ,(2)

(3.5b

GH) =2 pU2) [T o(2)— X, ;a+A(z—5,)2]E (2),
(3.50
whereE (2)=0[z—s,]0[e,—z].

The breakdown of local dynamics

Typically, Poisson brackets for dynamical variables are of

the form

{p(x),G(x")}=—=V,[p(x) &(x—x")]. (3.6)

locality condition becomed /2<a?.

In this delocalized regime the formalism will break down.
In particular, the Poisson brackets of the coarse-grained
fields, calculated in terms of Eq$2.6) and (2.7) will be
straightforward but complicated, and will necessarily lead to
non-local dynamicseven if the free-energy density arises
from local interactions In the Conclusion, we will discuss
possible alternatives to a nonlocal formalism based on dif-
ferent sets of variables.

IV. FLUCTUATING HYDRODYNAMICS

We can, however, consider the caseAsk1. This could
arise in the description of flux lines in superconductors or
polymer nematics in applied fields where the ground-state
polymer configurations are almost always parallelztoln
any of these limits, it is appropriate to replace the spread out
delta functionss?[ - ;a+ A(z—s)?] with pointlike delta func-
tions. In this case, we can calculate the Poisson brackets of
the average fields in terms of the canonical, microscopic
brackets. We find the following, nonzero brackets, to lowest
order in derivativegof both 7 ,(z) and delta functionsand
on:

{p(x),g"(xX")}=—[ 84— 84551 p(x) 8*(X—X")]
+(1+A) 3 pur(x) 3 (X=X)

—di[pon'(x) 83(x—x")]} (4.1
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{on'(x), g (x" )} = — [ 84— 84 831 6%(X—X") 31’ (%) and
+[(1—A) 8 92— Ag#?9.] 83(X—X') f [K K, Ks
d3x{ = (V- 8i)%+ = (V X 8i)%+ —(9,61)?
(41b) 5n 2 2 ( 2 ( z
4.7
TV \ — _ 9V Z_ !
{9"(2),9"(x")} = = 33 g“(x) 8*(X=X")] is the usual Frank free energy for a nematic, while
+a4[g(x")¥(X—%")].  (4.10
3 2, =
We have been forced to introduce an additional hydrody- Fpor= fd { op~+ [‘9 dp+poV - o] } 4.8
namic field,p1(x), the density of polymer heads and tails,
defined as is the free energy of the polymg2]. In Eq. (4.8), B is the
two-dimensional bulk moduluspy=p— p is the average,
B o0 . areal polymer density, an@ is the fugacity for hairpins and
PHT(X)Z; (1= AN &M a(Sa) =X, ]6(2=S0) free ends. We have replaceg; with the expression in Eq.
(4.3, to lowest order in the field fluctuation§p and &n
—&[F,(e,)—X, 18(e,—2)}. (4.2 [which is why we drop the factor of (2A) in front of

_ ) d,0p]. The paramete® is given byG=kgT//2p, where/
Note that the second term in E(}.13 is exactly equal t0 5 the typical polymer length2]. Terms of the form

dzp(X). In other words, we have SpV - 8 are not allowed due to the— — i symmetry of the
. L nematic phase.
(1=8)dzp(x) +aiLp N (X) = pyr(X). (43 We are now able to derive the equations of motiondfpr
This constraint is the familiar constraint of line liquids oN» and dp (where we have dropped the bar over the vari-
[12,13, which conserves polymer number but for polymerables denoting thé average They are(with o =g/p)
ends. The prefactor of (1A) comes from the average over

thez direction. In other words, the rotationally invariant con- dp=—10;g;+(1+A)pyTv,— 3;(5N;g,) (4.99
servation law isny- Vp+V-A=pyr. When averaging over
the intrinsic randomness @f,, we get a factor of (£ A) in SF[&n.]
front of d,p. It is not present in other terms because they areg,én;=—d;(v;on;) + (1—A)dp;—Adv,—T W+ i
higher order in derivatives and powers &. (on;)
(4.9b
A. Equations of motion
, _ , , 9.9, u ez oF[p]
With these Poisson brackets we can systematically derive 0g,=—9, +[0,—8,6,1pd, 5
the reactive terms of hydrodynamics. The viscosities will P P
appear in accord with the symmetries of the system. Being 0Vt &, (4.90
uniaxial there will be five viscositiegl4], characterized by
the viscous stress tensur, ;= 7,4,5A,5, Where where, in order to approach thermodynamic equilibrium, the
noise termsg;(X,t) and 6;(X,t) have the following correla-

Dvys= 11NN NGT+ 9] 8, 8,5+ 8,,50,,— 8,,0,4] tions[15]:

74 8,851 m3[N,u0 y%“‘ MyOupt Mulgduy (¢ (RA)ELR 1)) = 2KgT 7,0, 03— K1) B(E—1').

+n nyﬁﬂﬁ]Jr 7;5[5/“, MNgtn,n 57/3] (4.9 (4.10a
wheres,,,=5,,—n,n,. The form ofV is fixed by symme- (6,(X,1)6,(X't"))=2kgTI'5,,,8%(X—X") S(t—t")
tries: by nematic inversion it must be evenrinand by the (4.10B
Kubo formulag 5] it must be symmetric undet— v, y«<
and (uv)«(yB), and Aylg:% (dvpgtdgv,) is the strain (gﬂ(i,t)ay(i’,t’»:O. (4.100

rate tensor constructed out of the fluid veloaityExpanding
n=2z+ 60 we can find the viscosity tensor in the nematic  There are a number of features of these equations worth
phase. mention. First, we see that the typical polymer lengths come
The free energy from which we will derive the reactive into the equations through the couplig present in the
terms is: equations fow;on; andd,g, . WhenG is large, correspond-
ing to long polymers, we may take the densijpy,;=0. In
B 3 G2 the short molecule limit, presumaby~0. There is a cross-
f d Fequil » 4.9 over wavevectok .= \/ZBpg/(kBT/) below which the sys-
tem behaves as a pure nematic and above which the length of
where the equilibrium free energy is the sum of terms the polymers becomes important. There is a corresponding
time scalew.>k?~ 1//, which delineates a similar short-to-
Fequi= F st Fpol (4.6)  long crossover.
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In the short-polymer limit, care must be taken due to the a) b)
nature of the approximation under which the Poisson brack- .
ets were derived. In particular, since we treat the polymer
tangent field as a vector, we are, in principle, distinguishing .
n and —n. However, for small fluctuations around equilib-
rium, long polymer nematics should not sample the entire T /r‘
space of fluctuations: it is very unlikely that an entire poly-
mer will rotate bysr around thex or y axis. This simplifica-
tion is what enabled us to get a closed set of Poisson brackets ) d)
order by order in a derivative expansion. The effect of hair-

—
pins could be put in explicitly through the introduction of a
hairpin-density field 2]. =
B. Reactive couplings in the nematodynamic limit 1\ ,1\

Finally, we note that Eq(4.9b gives an expression for
the elusive reactive parametef5] in nematodynamics. By
rotational invariancefi— —n and the constrainii?=1, the
reactive part of the equation of motion fdrhas the form

FIG. 1. Velocity fields and nematic directors with various gra-
dients and molecular orientation®) and (c) gradient in thez di-
rection ofv, . This will rotate the director for all values & (b)
and(d) gradient in thex direction ofv,. Only in (d) will this rotate

dn, _ s 1+\ 1—\ " the molecule, i.e., wheB<1.
Tt Ow| T MO T My (4.17) , )
We can thus identify 3 3

1425 Thus, to leading order ing—1)=3A Eq. (4.14 agrees with
_ (4.12  Ed.(4.12. Thus, within theS~1 limit our result should be
3 consistent with the data as in R¢¥]. We note, moreover,

S ) that since the isotropic-to-nematic phase transition is first
This is in general agreement with the results of Forgégr order, S does not grow continuously from 0. Indeed, in

who calculated the value of within a Poisson bracket for- Maier-Saupe theors~0.44 at this transitiofil4], and thus
malism forQ,,, the symmetric, traceless order parameter fory ~ 2. Therefore the deviation between our result and the
short molecule nematic liquid crystgls4]. He found that more exact result4.14 should be small sufficiently well

aligned samples. However, although E412 may be quan-

AN=1-2A=

_1+2aS titatively reasonable, it misses an essential qualitative fea-
A= 3 (413 ture: it is always less than 1 and thus predicts that nematics
will always tumble.
wherea=(1,+21,)/(I,—1;) is a parameter depending on the  Though the linear result i fails to predict the crossover

moments of inertid, andl; of the nematogens parallel and from flow aligning to tumbling behavior, the virtue of our
perpendicular to the nematic axis, respectively. We thus rederivation of X is that we get a direct interpretation of its
cover Forster's result whea=1 or, in other words, when origin. In a highly aligned sample wit8=1 only gradients
the aspect ratid,/I; of the nematogens becomes infinite. of v, along thez direction can lead to rotations of the mol-
Presumably, this is a consequence of taking delta-functioecule(see Fig. 1L On the other hand, whe®<1, gradients
densities in the transverse plane. in the x direction ofv, can also rotate the molecules and so
It is interesting to compare this result to the work of Ar- the polymer nematics would always be in a tumbling mode.
cher and Larsofi7]. In the same limit of infinite aspect ratio, A higher order analysis in powers dfwould be required to
they found an expression farin terms of the expectations see if an>1 could come from our direct approach.
of the second-and fourth-rank order paramet@s)=S and
(Py4), whereP, andP, are the second and fourth Legendre V. CONCLUSIONS

polynomials evaluated at=cos#: _ _
In summary, we have derived the Poisson brackets of the

15/P.) 4+ AP, + 42 relevant degrees of freet_jom for a polymer nematic. We have
= XP2) +4&Ps) (4.14  shown that these canonical brackets become highly nonlocal
105Py) when the polymers start to overlap. In the limit where the

polymers do not overlap, we have presented a microscopic
derivation of the reactive coupling a coupling which is not
a long-wavelength limit of a correlation function.
Our analysis requires a “locality condition” in order to
be trustworthy. While this may appear restrictive, one might
(cod )=1-2(h2)~(1—(h2))?~(co #)*> (4.15 imagine that, at some level of coarse graining the polymers,
the no overlap condition might be met. If we were to clump
and so{P,)~ (35S?— 10S—7)/18, which gives polymer regions correlated in they plane together and

To be consistent, we should expand E414) in powers of
A=(1-9)/3 to compare with Eq4.12 and compare linear
terms. First, to linear order iA,
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coarse grain to the scale of this “entanglement correlatiordensity could be used as a starting point for a phenomeno-
length” &, our analysis may be applicable. Our analysis islogical theory of “entanglement dynamics.” Another vari-
especiallyapplicable to flux lines in superconductors. There,able of interest might be the repton density, which measures
pur=0 and there is no problem, even in principle, to con-length per unit lengthi17]. It may be possible to develop a
sidering the flux line tangents as vectors. The flux lines, imydrodynamics for this field as well8].

addition, have\ =0, simplifying the theory further. It is per-
haps in this context that one could hope to make the most
theoretical progress.

This derivation has shown the inherent, unavoidable non-
locality in polymer nematic dynamics. An interesting possi- It is a pleasure to acknowledge stimulating discussions
bility is to focus on a different set of conserved or almostwith D. Forster, E. Frey, T. Lubensky, S. T. Milner, D.
conserved variables. For instance, it may be possible to réMorse, R. Pelcovits, T. Powers, H. Stark, and J. Toner. This
formulate this dynamics in terms of an entanglement densityork was supported by the NSF MRSEC through Grant No.
by calculating the Hopf density16], a scalar that measures DMR96-32598, the Research Corporation, the Donors of the
the local curvature of the director configuration—for long Petroleum Research Fund, administered by the American
polymers curvature is a measure of local entanglement. Thi€hemical Society, and the Alfred P. Sloan Foundation.
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